
Prime Computer, Inc.

COBOL
Revision 18

•

. -
. ''' — ''•• -,;T-H'i^r

r ,, **lli-lHi\
•';' J /DVE; I M L T

C TURE

o^'tlSl PI? "
ie »JJJ" PIC 53.

[0 S r n PICTURE
- , 1 £) £ - W / J * :'-. t i-1

PICTURE
PICTURE K.
PICTURE * •

g 9 9 9 9 •

9 9 U S .

FDR3339

The Programmer's Companion is a series of pocket-size,
quick reference guides to Prime software products.
Published by Prime Computer, Incorporated
500 Old Connecticut Path, Framingham, MA 01701
Produced by Prime Technical Publications Department,
500 Old Connecticut Path, Framingham, MA 01701

Copyright © 1982 by Prime Computer, Incorporated

All rights reserved.

The Programmer's Companion and PRIMOS are registered
trademarks of Prime Computer, Incorporated.

The information contained in the document reflects the
software as of Revision 18.3 and is subject to change
without notice. Prime Computer, Incorporated assumes no
responsibility for errors that may appear in this document.

First Printing March 1982

Credits

Research and copy
Grace Na

Produced by
D. Christine Benders

Designed by
William Agush

TABLE OF CONTENTS
Format Notation 1
COBOL Program Structure 2
Identification Division 5
Environment Division 6
Data Division 12
Procedure Division 19
Verbs 20
Conditions 55
Subscripting 59
Indexing 60
COBOL Character Set 61
Reference Tables of COBOL 62

Coding Format 6 2

Classes and Categories of Data 63
Data Representation and Usage 63
Arithmetic Operators 63
Logical Operators 63
Relational Operators 64
Permissible Symbols in PICTURE Clause 64
Sign Representation 65
Results of Sign Control Symbols in Editing 65
Prime COBOL Reserved Words 65
ASCII Character Set 68
File Status Code Definitions 7C
Permissible Input/Output Statement after OPEN

Statements in Different Access Modes 72
Permissible MOVEs 7 3

Compiling 7 4

Run-time Assignments 7 -

Format notation

FORMAT NOTATION
Abbreviation of PRIMOS commands

The minimum required abbreviation of PRIMOS commands
is shown in rust-colored letters.

Keywords

Underlined and rust-colored uppercase words are key­
words. They are required and should be entered literally
whenever the statement or phrase in which they appear is
used.

Optional words

Uppercase words which are not underlined or rust-
colored are optional words. They may be omitted, or they
may be included solely for improving readability of the
program.

Lowercase words

Words printed in lowercase letters in formats represent
generic parts (such as data-names) of which a valid repre­
sentation must appear.

< , > , =i +. - . •

These characters when appearing in formats, although
not underlined, are required when such formats are used.

[]
A statement, phrase, or word enclosed in square brackets
is optional.

Braces are used to enclose words, phrases, or statements
which represent a choice of mutually exclusive options, of
which one must be chosen.

Parentheses()

Parentheses, where they appear, are a required literal part
of the command or statement syntax.

The ellipsis indicates the immediately preceding unit may
be repeated.

COBOL PROGRAM STRUCTURE

]D DIVISION, (or IDENTIFICATION DIVISION.)
PROGRAM-ID. program-name.

[AUTHOR, [comment-entry]...]
[INSTALLATION, [comment-entry]...]
[DATE-WRITTEN, [comment-entry] ...]
[DATE-COMPILED, [comment-entry]...]
[SECURITY, [comment-entry]...]
[REMARKS, [comment-entry]...]

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION. era
[SOURCE-COMPUTER, entry.]
[OBJECT-COMPUTER, entry.]
[SPECIAL-NAMES, entry.]]
[INPUT-OUTPUT SECTION. o

H

O

Cfl

FILE-CONTROL, {entry! ...
[I -O-CONTROL. entry.]]

DATA DIVISION.

FILE SECTION.

f i le-description-entry, [record-descript ion-entry] ...

sort-f i le-description-entry Jrecord-description-entryJ ..

WORKING-STORAGE SECTION.

77-level-description-entry
record-descript ion-entry

o
crc

continued

LINKAGE SECTION.

77-level-description-entry
record-descript ion-entry

£>

PROCEDURE DIVISION [USING data-name-1 [, data-name-2]
[DECLARATIVES.
{section-name SECTION. USE sentence,
[paragraph-name, [sentence] ...] ... J . . .
END DECLARATIVES.]

{section-name SECTION,
[paragraph-name, [sentence] . . .] ... ! . . .

. .] .

o
era

C/5

IDENTIFICATION DIVISION a
w

FORMAT: §
i—i

ID DIVISION, (or IDENTIFICATION DIVISION.) 3

PROGRAM-ID. program-name, (no special characters in name) 3

2:
[AUTHOR, [comment-entry] ...] a

<"
[INSTALLATION, [comment-entry] ...]

[DATE-WRITTEN, [comment-entry] ...]

[DATE-COMPILED, [comment-entry] ...]

[SECURITY, [comment-entry] ...]

[REMARKS, [comment-entry] ...]

ENVIRONMENT DIVISION

FORMAT:

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER, computer-name.] 2
<

[OBJECT-COMPUTER, computer-name.] S

Z
[SPECIAL-NAMES. [CONSOLE IS mnemonic-name]

M

[, CURRENCY SIGN IS literal] H
U

[, DECIMAL-POINT IS COMMA]

[, ASCII [S NATIVE]].] g
<j

[INPUT-OUTPUT SECTION. §
O
as

FILE-CONTROL.
W
z

|file-control-entry.j . . . H
a

[l-O-CONTROL.
o"

SAME AREA FOR file-name-1 , file-name-2 , . . .]]

• Fi le-control Ent ry

FORMAT 1:

SELECT fi le-name

ASSIGN TO device

[; RESERVE integer-1
AREA

AREAS

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1] .
w
W n
H

FORMAT 2:

SELECT f i le-name

ASSIGN TO device

[; RESERVE integer-1
AREA

AREAS

GANIZATI3N IS RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-1]
[; ACCESS MODE I S) (RANDOM

, RELATIVE KEY IS data-name-1 f
DYNAMIC \

[; FILE STATUS IS data-name-2] .

continued

FORMAT 3:

SELECT f i le-name

ASSIGN TO device

a

[; RESERVE integer-1]

AREA

AREAS

; ORGANIZATION IS INDEXED

l SEQUENTIAL
[; ACCESS MODE IS J RANDOM

I DYNAMIC

; RECORD KEY IS data-name-1

CD
M
r1

w
n
H

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]

[; FILE STATUS IS data-name-3].

FORMAT 4:

SELECT file-name

ASSIGN TO device.

DATA DIVISION

FORMAT:

DATA DIVISION.

[FILE SECTION.

[FD file-name [UNCOMPRESSED]

RECORD IS] (STANDARD
;LABEL

RECORDS ARE OMITTED

[; BLOCK CONTAINS [integer-1 TO] integer-2
RECORDS

CHARACTERS

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

[; VALUE OF FILE-ID IS l i teral-1]

[; OWNER IS l i teral-2]

(RECORD IS |
[; DATA] > data-name-1 [, data-name-2] . . .]

/ RECORDS ARE J

[; CODE-SET IS ASCII] ,

[record-descript ion-entry] ...] ...

[SD f i le-name

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS] continued

[; DATA
RECORD IS

RECORDS ARE
data-name-1 [, d a t a - n a m e - 2] . . .]

{record-description-entry } . . .] . . .]

WORKING-STORAGE SECTION.

77-level-descript ion-entry
record-descr ipt ion-entry

LINKAGE SECTION.

77-level-descr ipt ion-entry
record-descr ipt ion-entry

a
<

• Record Description Entry

FORMAT 1:

(data-name-1 \
level-number J i [; REDEFINES data-name-2]

(FILLER)

[; OCCURS integer-1 TIMES

t ASCENDING |
[j > KEY IS data-name-3 [, data-name-4] . . .]

(DESCENDING J

[INDEXED BY index-name-1 [, index-name-2] . . .]]

continued

PICTURE

PIC
IS character-str ing]

DISPLAY
COMPUTATIONAL

[; [USAGE IS] J COMP
INDEX
COMPUTATIONAL-3
COMP-3

[; [SIGN I S]
LEADING

TRAILING

SYNCHRONIZED

SYNC

[SEPARATE CHARACTER]]

LEFT

RIGHT

D

a

(JUSTIFIED |
[;] [R I G H T]

(JUST J

[; BLANK WHEN ZERO]

[; VALUE IS literal].

FORMAT 2:

t T H R O U G H |
66 data-name-1; RENAMES data-name-2 [| [data-name-3] .

! T H R U)

continued

FORMAT 3:

VALUE IS) (THROUGH
88 condi t ion-name; •(> l i teral-1 [< > l i teral-2]

VALUES ARE) (T H R U \

THROUGH
[, l i teral-3 [{ } l i teral-4]]

THRU

FORMAT 4:

I VALUE IS |
88 condi t ion-name; < > l i teral-1 [, l i teral-2] . .

I VALUES ARE J

PROCEDURE DIVISION g
O n

FORMAT: W
D
C

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] . . .] . g

a
[DECLARATIVES. <

o"
{section-name SECTION. USE sentence. 3

[paragraph-name, [sentence] . . .] .

END DECLARATIVES.]

{section-name SECTION.

[paragraph-name, [sentence] . . .] .
eo

VERBS g

• ACCEPT Statement

FORMAT 1:

ACCEPT data-name [FROM mnemonic-name]

FORMAT 2:

DATE

>
n n w
H

ACCEPT data-name FROM •{ DAY
TIME

ADD Statement

FORMAT 1:

(data-name-1
ADD \

, data-name-2

, l i teral-2 (l i teral-1

[; ON SIZE ERROR imperative-statement]

. . . TO data-name-3 [ROUNDED]

FORMAT 2:

(data-name-1

literal-1
ADD

, data-name-2

, l i teral-2

, data-name-3

, l i teral-3

GIVING data-name-4 [ROUNDED] [; ON SIZE ERROR imperative-statement]
continued

FORMAT 3:
to

(CORRESPONDING j
ADD] V identifier-1 TO identifier-2

I CORR \

[ROUNDED] [; ON SIZE ERROR imperative-statement]

>
a
a

• ALTER Statement £
H
W

FORMAT: £
>

ALTER paragraph-name-1 TO [PROCEED TO] paragraph-name-2 p

• CALL Statement

FORMAT:

CALL literal-1 [USING data-name-1 [, data-name-2] . . .]

to
CO

• CLOSE Statement £

FORMAT:

CLOSE file-name-1 [, file-name-2] . . .

• COMPUTE Statement
n

FORMAT: O
CO
M

data-name-2) n
COMPUTE data-name-1 [ROUNDED] = ^numeric-literal [2

arithmetic-expression) ^
G
H

[; ON SIZE ERROR imperative-statement] W

• COPY Statement g

FORMAT: §
W

path-name' \ i C)F \ w
I [\ ' UFD-name'] n

file-name') (IN

• DELETE Statement

FORMAT:

DELETE file-name RECORD [; INVALID KEY imperative-statement] £

• DISPLAY Statement

FORMAT:

data-name
DISPLAY i literal

figurative-constant

data-name
literal
figurative-constant

, .[UPON mnemonic-name]

• DIVIDE Statement

FORMAT 1:

data-name-1
DIVIDE INTO data-name-2 [ROUNDED]

literal-1)

[; ON SIZE ERROR imperative-statement]

FORMAT 2:

!

data-name-1) (INTO) I data-name-2)
M M V GIVING data-name-3 rROUNDEDl

literal-1 J (BY \ |literal-2)

[; ON SIZE ERROR imperative-statement]

• ENTER Statement

FORMAT:

ENTER

ASSEMBLER

• EXHIBIT Statement »

FORMAT:

i literal
EXHIBIT j

' NAMED data-name

w
• EXIT Statement ffi

bd
>—<

FORMAT: §
><

EXIT. H

• EXIT PROGRAM Statement

FORMAT:

EXIT PROGRAM.

• GO TO Statement

FORMAT 1:

to GO TO procedure-name. S
continued

FORMAT 2:

GO TO procedure-name-1 [, procedure-name-2] . . .

DEPENDING ON data-name.

• IF Statement

FORMAT:

| NEXT SENTENCE j (statements)
i f condition;] [[; ELSE j []

(statements) (NEXT SENTENCE)

• INSPECT Statement

FORMAT 1:

INSPECT data-name-1 TALLYING

, data-name-2 FOR
t ALL \ / data-name-3\
V LEADING/ » literal-1 /

CHARACTERS

I BEFORE I / dc

{TFTE IT } ,NIT,AL l . N
data-name-4

eral-2

FORMAT 2:

INSPECT data-name-1 REPLACING

CHARACTERS BY
I da.a-name-6 | I BEFORE A , N | T | A L I
V literal-4 / V AFT!

1 dat
' \ l i te i

data-name-7 '
literal-5

{ f data-name-5 \ i data-name-6 \ / BEFORE 1 (data-name-7 \ (

^ f S - J (' \ l i . e ra l -3 / ^ { l l teraM) [{ I F T E I T } I N I T , A L (li.eral-5) j J j

continued

file:///litei
file://'/li.eral-3

FORMAT 3:

INSPECT data-name-1 TALLYING

, data-name-2 FOR
(A L L |
\ LEADING I

CHARACTERS

/data-name-3\
\ literal-1 / (f f ^ M .) INITIAL / - « - n - m - n

\ AFTER / V literal-2 /

REPLACING

CHARACTERS BY

J . \ LEADING

data-name-6 I dat
V lite

.BEFORE » I da.a-name-7 |
\ AFTER / l literal-5 /

•{
data-name-5
literal-3 } ^ {

data-name-6 \
literal-4 /

(BEFORE -i , . „ , . , . , / data-name-7 ^
\ AFTER / ' N m A L V l i . e r a l - 5 }

• MOVE Statement
<

FORMAT 1:

data-name-1 j
> TO data-name-2 [, data-name-3]

literal)

FORMAT 2:

(CORRESPONDING j
MOVE) [identifier-1 TO identifier-2

(CORR j

w
CO

• MULTIPLY Statement £

FORMAT:

(data-name-1)
MULTIPLY }

I numeric- l i teral-1)

I data-name-2 [GIVING data-name-3]

(numeric- l i teral-2 GIVING data-name-3

[ROUNDED] [; ON SIZE ERROR imperative-statement]
f
H

• OPEN Statement

FORMAT.

OPEN
INPUT 1

1-0
OUTPUT

, EXTEND)

file-name-1 [, file-name-2]

O
w
•
w
pa

o
pa

• PERFORM Statement

FORMAT 1:

PERFORM procedure-name-1 [

(integer)
[j [TIMES]

(data-name-1 5

THROUGH

THRU
procedure-name-2]

continued
CO
en

FORMAT 2: u

(T H R O U G H |
PERFORM procedure-name-1 [j V procedure-name-2]

(T H R U)

(data-name-1) (data-name-2 i
[VARYING] [FROM j index-name-2 [BY

(index-name-1 J ' l i teral-1)

c data-name-3)
I >] UNTIL condi t ion-1
I l iteral-2 J

W
Pd
* a
O
H
2

FORMAT 3: M
M

THROUGH j O
PERFORM procedure-name-1 [< I procedure-name-2] g

/ THRU |

(data-name-1) (data-name-2
VARYING \ f FROM \ index-name-2

< index-name-1 » I literal-1

(data-name-3 i
BY j [UNTIL condition-1

(literal-2 J

(data-name-4) i data-name-5
[AFTER] > FROM < index-name-4

' index-name-3 J (literal-3
CO

continued ^

(data-name-6) »
BY J | UNTIL condition-2

(literal-4)

(data-name-7) t data-name-8)
[AFTER \ I FROM \ index-name-8 \

(index-name-7) (literal-5

(data-name-9)
BY] [UNTIL condition-3]]

I literal-6 J

w

O

• READ Statement

FORMAT 1:

READ f i le-name [NEXT] RECORD [INTO data-name-1]

[; AT END imperative-statement]

FORMAT 2:

READ f i le-name RECORD [INTO data-name-1] [; KEY IS data-name-2]

[; INVALID KEY imperative-statement]

• READY TRACE Statement g

FORMAT:

READY TRACE.

• RESET TRACE Statement

FORMAT: g
a

JET TRACE, gj
M
W
H

• RELEASE Statement gj
ir1

W
FORMAT: >

W

RELEASE record-name [FROM data-name] g
H
C

• RETURN Statement

FORMAT:

RETURN f i le-name RECORD [INTO data-name]

; AT END imperative-statement

• REWRITE Statement £

FORMAT:

REWRITE record-name [FROM data-name]

[; INVALID KEY imperative-statement]

pa
H
W

• SEARCH Sta temen t <£

>

FORMAT 1: n
X

t identifier-2)
SEARCH identifier-1 [VARYING] I]

(index-name-1)

[; AT END imperative-statement-1]

!

imperative-statement-2 >
[

NEXT SENTENCE J

(imperative-statement-3)
[; WHEN condition-2 j []

(NEXT SENTENCE)
continued w

FORMAT 2: £

SEARCH ALL identifier-1 [; AT END imperative-statement-1]

(IS EQUAL TO/ (identifier-3
data-name-1]

I J MS = literal-1

condition-name-1

IS EQUAL TO Mdentifier-3
data-name-2

[AND) MS = ' literal-2

condition-name-2 1 w
>

imperative-statement-2 / n

• SET Statement

FORMAT 1:

(index-name-1 [, index-name-2] . . .) (index-name-3
SET] 1 T O] data-name-3

I data-name-1 [, data-name-2] . . .) I integer-1

FORMAT 2:

SET index-name-4 [, index-name-5]
UP BY) (data-name-6

DOWN BY J ' in teger-2

• SORT Statement

FORMAT:

ASCENDING
SORTfile-name-1 ON \ \ KEY data-name-1 [, data-name-2]

DESCENDING \

I THROUGH
INPUT PROCEDURE IS section-name-1 [I J. section-name-2]

I THRU

USING tile-name-2

THROUGH
OUTPUT PROCEDURE IS section-name-3 [-j }• section-name-4]

THRU

GIVING file-name-3

FORMAT:

START Statement g

CO

H
GREATER THAN i °

x NOT LESS THAN> , J

START file-name [KEY IS [^ EQUAL TO (] d a t a " n a m e]

[; INVALID KEY imperative-statement]

• STOP Statement

FORMAT:

i RUN j
STOP \ [^

literal '

• STRING Statement

FORMAT:

CO

STRING
data-name-1

literal-1

data-name-4

literal-4

"1 [~ , data-name-2T

) L . literal-2 J

"i r , data-name-5 "|

) L , literal-5 J

DELIMITED BY
data-name-3
literal-3
SIZE

data-name-6
I literal-6

SIZE

INTO data-name-7 [WITH POINTER data-name-8]

[; ON OVERFLOW imperative-statement]

en
H

i—i

2
O

• SUBTRACT Statement

FORMAT 1:

i data-name-1
SUBTRACT]

' l i teral-1)

FROM data-name-3 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

, data-name-2

L, Mteral-2

C/5

c
H
>
n

continued CO

FORMAT 2: o

data-name-1) r , data-name-2
SUBTRACT

FROM

(literal-1

data-name-3

L, literal-2

GIVING data-name-4 [ROUNDED]
literal-3

[; ON SIZE ERROR imperative-statement]

en
C
w
H
pa
> n

FORMAT 3: g

H
CORRESPONDING) W

> SUBTRACT j V data-name-1 n

< CORR J H

FROM data-name-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

• UNSTRING Statement

FORMAT:

UNSTRING data-name-1

DELIMITED BY [ALL]

data-name-2
, OR [ALL]

data-name-3

l i teral-2 l i teral-1

[O data-name-4 [, DELIMITER IN data-name-5] [, COUNT IN data-name-6]

[, data-name-7 [, DELIMITER IN data-name-8] [, COUNT IN data-name-9]]

[WITH POINTER data-name-10] [TALLYING IN data-name-11]

[; ON OVERFLOW imperative-statement]

• USE Statement

FORMAT:

USE AFTER STANDARD
EXCEPTION

ERROR

a
W

(filename
PROCEDURE ON) INPUT

) OUTPUT
(l ^ O

Ol

• WRITE Statement

FORMAT 1:

WRITE record-name [FROM data-name-1]

(AFTER j (u data-name-2/ TUNE 1 >)
[] [ADVANCING J11 integer $ LLINES_nf l

I BEFORE \ I PAGE »

FORMAT 2:

WRITE record-name [FROM data-name-1]

[; INVALID KEY imperative-statement]

CONDITIONS n
o
3
P. • Relation Condition

FORMAT:

IS [NOT] GREATER THAN
IS [NOT] LESS THAN

data-name-1 . 1 IS [NOT] EQUAL TO j data-name-2
|F \ I \ IS [NOT] >

literal-1 \ J IS [NOT] < I (l iteral-2
IS [NOT] = J

en

• Class Condit ion

FORMAT:

IF data-name IS [NOT]
ALP

• Condition-name Condit ion

FORMAT:

]F [NOT] condi t ion-name

n
o
Br.
O
3

• Sign Condition Q
3

FORMAT:
o
3

NEGATIVE
IF data-name IS [NOT] < ZERO

POSITIVE

• Negated Simple Condition

FORMAT:

IF NOT simple-condi t ion

• Combined Condi t ion
oo

AND |
F cond i t i on^ [condition

OR J

• Abbreviated Combined Relation Condition

FORMAT:

AND |
F relation-condition { \ I [NOT] [relational-operator] object > ... o

OR \ |

o'
3
09

SUBSCRIPTING g>

FORMAT: n

data-name) a
f CTO

> (subscript-1 [, subscr ipt-2 [, subscr ipt-3]])
condi t ion-name J

CD

INDEXING g
FORMAT:

i data-name i i index-name-1 [{±} literal-2]

(
(condition-name) l literal-1

(index-name-2 [{±} literal-4])

['
(literal-3 J

< index-name-3 [{±} literal-6] |

[, 11)
(literal-5 >

CL

a
5'

00

COBOL Character Set 6 1

Note

When the figurative constant LOW-
VALUES is used with binary data, it is
interpreted as numeric. In all other
instances, it is interpreted as alpha­
numeric.

H
W
m

u
H
U
<
<
EC
u
O
PQ
o
u

<

CD
Z

z <
u
S

<

X

<

li 1

s-g

33

1

| B |

I

CO

1

o ,£ « _=

f f l f j sf.-_

11

l |

II

62 Coding Format

REFERENCE TABLES OF COBOL

Coding Format

1-6 The sequence number area may contain a

six-digit sequence number or blanks.

7 The special coding symbol area may contain

a blank or one of three symbols:

• "*" indicates the current line is a comment
line.

• "/" indicates the next line will be printed
at the top of a new page of the program
listing.

• "-" indicates the current line is the con­
tinuation of a non-numeric literal.

8-11 All division, section, paragraph, and proce­
dure names must begin in the A area. Level
numbers may appear in the A area, but are
not required to.

12-72 All otherprogram elements must be confined
to B area.

73-80 The identification area is ignored by the com­
piler. Frequently, it is used to contain the
program identification.

Tables 63

Classes and Categories of Data

Level of Item

Elementary

Nonelementary
(Group)

Class

Alphabetic
Numeric

Alphanumeric

Alphanumeric

Category

Alphabetic
Numeric
Numeric Edited

Alphanumeric Edited
Alphanumeric

Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Data Representation and Usage
Usage Is Machine Description

DISPLAY EXTERNALDECIMAL
COMPUTATIONAL BINARY
INDEX BINARY
COMPUTATIONAL-3 PACKED DECIMAL

Arithmetic Operators
Operator

Binary:

Unary:

Meaning

Addition
Subtraction
Multiplication
Division

The effect of multiplication by numrrii
literal +1
The effect of multiplication by numeric
literal -1

Logical Operators
Operator

AND

Meaning
Logical conjunction; the truth value is
"true" if both of the conjoined condilioiis
are true; "false" if one or both of the con­
joined conditions is false.

continued

64 Tables

OR Logical inclusive OR; the truth value is
"true" if one or both of the included condi­
tions is true; "false" if both included con­
ditions are false.

NOT Logical negation is the reversal of the
truth value; i.e., the truth value is "true"
if the condition is false, and "false" i I con­
dition is true.

Relational Operators
Operator Meaning
= is equal to
EQUAL
< is less than
LESS
> is greater than
GREATER
NOT= is not equal to
NOT EQUAL
NOT< is greater than, or equal to
NOT LESS
NOT> is less than, or equal to
NOT GREATER

Permissible Symbols in PICTURE Clause
Symbol Meaning

A Any alphabetic character or space
B Space insertion character
P Assumed decimal scaling position
S Operational sign
V Assumed decimal point
X Any character
Z Zero suppression and space replacement

character
9 Any numeric character
/ Stroke insertion character
, Comma insertion character

Decimal point
+ Plus sign insertion character

Minus sign insertion character
CR Credit placement characters
DB Debit placement characters

Tables-Reserved Words 65

* Zero suppression and asterisk replacement

character

S Currency sign insertion character

Sign Representation

SIGN Clause Sign Representation

TRAILING Embedded in rightmost

byte

LEADING Embedded in leftmost byte

TRAILING SEPARATE Stored in separate right­

most byte

LEADING SEPARATE Stored in separate leftmost

byte

Results of Sign Control Symbols in Editing

Editing Symbol In

Picture-String

+

CR

DB

RESULT

Data Item

Positive Or Zero

space

2 spaces

2 spaces

Dataltem

Negative

CR

DB

Prime COBOL Reserved Words

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCII-
ASSEMBLER'
ASSIGN
AT

AUTHOR

BEFORE

BLANK
BLOCK
BY

CALL
CHARACTER
CHARACTERS
CLOSE
COBOL
CODE
CODE-SET
COMMA
COMP
COMP-3*

COMPUTATIONAL
COMPUTATIONAL-3-
COMPUTE
CONFIGURATION
CONSOLE-
CONTAINS continued

66 Reserved Words

COPY
CORR
CORRESPONDING
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

ELSE
END
ENTER
ENVIRONMENT
EQUAL
ERROR
EVERY
EXCEPTION
EXHIBIT*
EXIT
EXTEND

FD
FILE
FILE-CONTROL
FILE-ID'
FILLER
FIRST

FOR
FROM

GIVING

GO
GREATER

HIGH-VALUE
HIGH-VALUES

l-O
1—O-CONTROI.

ID*
IDENTIFICATION

IF

IN
INDEX
INDEXED
INITIAL
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS

JUST
JUSTIFIED
KEY
LABEL
LEADING
LEFT
LENGTH
LESS
LINE
LINES
LINKAGE
LOW-VALUE
LOW-VALUES
MODE
MOVE
MT9*

MULTIPLY
NAMED-
NATIVE
NEGATIVE
NEXT
NOT

NUMBER
NUMERIC

OBJECT-COMPUTER
OCCURS
OF
OFF
OFFLINE—PRINT-
OMITTED
ON
OPEN
OR
ORGANIZATION
OUTPUT
OVERFLOW
OWNER-
PAGE
PERFORM
PFMS*

Reserved Words G7

PIC
PICTURE
POINTER
POSITION
POSITIVE
PRINTER-
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PUNCH-
QUOTE
QUOTES
RANDOM
READ
READER"
READY-
RECORD
RECORDS
REDEFINES
RELATIVE
RELEASE
REMARKS-
RENAMES
REPLACING
RESERVE
RETURN
REWRITE
RIGHT
ROUNDED
RUN
SAME
SEARCH
SECTION
SECURITY
SELECT
SENTENCE
SEPARATE
SEQUENTIAL
SET
SIGN
SIZE
SORT

SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
START
STATUS
STOP

STRING

SUBTRACT
SYNC
SYNCHRONIZED

TABLE
TALLYING
TAPE
TERMINAL
THAN
THROUGH
THRU
TIME
TIMES
TO
TRACE
TRAILING

UNCOMPRESSED*
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING

VALUE
VALUES
VARYING

WHEN
WITH
WORDS"
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

"Prime extension lo ANSI standard

68 ASCII Character Set

ASCII Character Set
ASCII

Character

NUL (Low-value)
(space)

! (exclamation]
" (quote)
a [number]
$
' (apost rophe)

I
)

. (comma)
- (minus)
. (period)
/ (virgule. slash, stroke)
0 (zero)
1
2
3
4
5
6

(colon)
(semicolon)

exadecimal

80

A 0

A l

A 2

A 3

A 4

A 7

A 8

A 9

A A

All

AC

A D

A E

AF

BO

B1

B2

B3

B4

B5

B6

B 7

B8

B9

BA

BB

BC

HI)

BE

BF

CO

C I

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC
CD
CE
CF
DO
D l

Octal

2 0 0

2 4 0

241

242

243

244

247

2 5 0

251

252

253

254

255

256

257

2 6 0

261

262

263

264

265

266

267

270

271

272

273

274

275

276

277

300

301

302

303

304

3 0 5

306

3 0 7

3 1 0

311

3 1 2

313

314

3 1 5

316

317

320

321

Punched Cards

No Punch
12-8-2
7-8

8-3

11-3-8
5-8

12-5-8
11-5-8
11-4-8
12-6-8
0-3-8
11

12-3-8
0-1

0

1

2

3

4

5

6

7

8

9

8-2

11-6-8
12-4-8
6-8

0-0-8
0-7-8
8-4

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8

ASCII Character Set 69

0 (+zero)
0 (-zero)
DEI. (high-value]

D2
D3

D4
D5

D6

[)"

D8

Da
DA
El

E2

E3

E4

E5

E6

E7

E8

E9

EA
EB

EC

ED
hh

EF

FO

Fl

F2

Fa
F4
F5

F6
F7

F8

F9
FA

FB
FD
FF

322

323
324

325

326
327

330

331
332

341

342

343

344

345

346
347

350

351

352

353

354

355

356
357

360

361

362

363
364

365

366
367

370
371

372

373
375
377

11-9
0-2

0-3

0-4

0-5

0-6

0-7

0-8

0-9

12-0
11-0

Note
(Characters with no Punched Cards code are
not supported for punched card entry).

70 File Status Codes

File Status Code Definitions
File

Organ iza t ion S t a t u s Code

SEQUENTIAL 00

Error Type

None

Permanen t I

Error

Permanent I/O

Error

Forms Error

Noni'

End of File

Invalid Key

Invalid Key

Inval id Key

Permanent I ()

Error

Prune-def ined

condi t ions .ire

codes 90-99

Interpretation

Successful completion of oper­
ation.
End of file r e a c h e d on READ

opera t ion : file po in te r posi­

t ioned pas l logical end of file.

Opera t ion unsuccessfu l due

lo an I/O e r ro r such a s d a t a

check, par i ty error , or I r ans -

missinii error .

Opera t ion unsuccessfu l due

to B bounda ry v io la t ion: disk

space full.

F O R M S va l ida t ion e r ro r on a

READ.

Successful completion of oper­

ation.

End of file encoun te red dur ­

ing a READ.

User has a t t e m p t e d to wr i t e

b e y o n d p r e d e f i n e d b o u n ­

dar ies of the file a l located by

CREATK.

Record a l r eady ex is t s in da t a

subfile: user a t t empted to add

a record wi th a non -un ique

record number .

Record nol found; no record

found wi th the specified key

value.

Boundary violation: disk space

full.

Permanent I/O error ; could

be a par i ty error , d a t a check

or t r ansmis s ion er ror .

Lucked r eco rd ; a t t e m p t lo

access a record .dread y locked

by ano ther user or p rocess .

Unlocked record: REWRITE

a t t e m p t e d wi thout first lock­

ing the record wi th a READ.

M U M S concurrency error: an­

o the r u se r h a s de le t ed the

record you w e r e t r y i n g to

access .

Relative record n u m b e r er ror ;

user supp l i ed a record num­

ber larger than the n u m b e r

pre-a l located by CREATK.

At tempt to do an indexed add

lo a direct access file; cun'l

,itU\ en t r ies to a RELATIVE

file even I f l f s o p a n e d for IN­

DEXED across .

File Status Codes 71

00 NONE

io BndofFile

22 Invalid Key

System I/O

Prime-defined
conditions are
codes 90-99

System error; possibl) serious.

Veri fy thai error is not due to

.t START th.ii encountered a

In, ked record before call ing

your System Analyst.

Success fu l comp le t i on o t

operation.

End of f i le reached on READ

operation; f i le pointer posi­

tioned past logical end of fi le.

At tempt to perform a WRITE

or REWRITE which wou ld

created duplicate primary key

entry. Duplicate pr imary key

values are i l legal.

Record not found on an unsuc­

cessful key search; there is

no record in the fi le w i t h this

key value.

Operat ion unsuccessful due

loan I O error, such as a data

check, par i ty error or a trans­

mission error.

Record already locked: an­

other user or process has

already locked this record for

update.

Record not locked; a RE­

WRITE opera t ion was at­

tempted without first lock­

ing the record via a READ oper­

ation.

A l tempt It) add a duplicate

secondary key value Io a secon­

dary index subfi le that does

not permit duplicates.

The indexes referred to in the

program do not match those

d e f i n e d d u r i n g t e m p l a t e

creation.

MIDAS concurrency error: an­

other user has deleted ihe

record you were t ry ing to per­

form some operation on.

Bad record length suppl ied,

the program has incorrectly

specified the record length

(data size) of the M IDAS fi le.

System error: could be serious

trouble. Ver i fy that the pro­

gram is not seriously f lawed

before you call your System

Analyst .

72 Input/Output Statements

Permissible Input/Output Statements —
OPEN Statements and Access Modes

File
Organization

Sequential

Indexed

Relative

File Access

Made

SEQUENTIAL

SEQUENTIAL

RANDOM

D Y N A M I C

Procedure

Statement

READ

WRITE

REWRITE

READ

WRITE

REWRITE

START

DELETE

READ

WR'ITE
REWRITE

START
DELETE

READ

WRITE

REWRITE

START

DELETE

Input

X

X

X

X

X

X

O p l
Output

X

X

X

X

on

I-O Extend

X
X

X

X

X

X
X

X

X
X

X

X

X

X

X
X

Permissible MOVEs 73

Permissible MOVEs

RECEIVING DATA ITEM

\ \ \ \ -A \ \

\ \ X A IK \ \
\ \ \ U V>%\ % \ ^ \

\ T' \ "ZA % xb A o \ v \

vWwvw
\ \ *XA
\ \ \ v̂ \ \ \ \ v \

SENDING

DATA

ITEM

ALPHABETIC

BINARY

ALPHANUMERIC EDITED

NUMERIC INTEGER

NUMERIC NONINTEGER

NUMERIC EDITED

ALPHANUMERIC

X

X

X

X

X

X

X(3)

X

X(3)

X

X

X

X

X

X

X

X

X(4)

X

X(l)

X

X(2)

X(3)

X

Notes

1. If receiving operand length L is less than or
equal to 18. target Picture 9(L) is assumed.
Otherwise, the MOVE is disallowed.

2. The source is converted to DISPLAY form with
separate trailing sign (blank for positive), then
moved as a character string source subject to
truncation or blank padding depending on re­
ceiving item's length.

3. The source is considered as a character string.

4. If source length L is less than or equal to 18,
source Picture 9 (L) is assumed. Otherwise, the
MOVE is disallowed.

74 Compiling

COMPILING
COBOL pathname [-option-1] . . . [-option-n]

Invokes the COBOL compiler.

Options: (• indicates Prime-supplied defaults)

Specify Input/Output Devices:

pathname

-BINARY NO

. YES
Specifies binary (object) file. Default name file­

name.BIN or B_filename

-INPUT pathname
Specifies the source file.

pathname
. NO

-LISTING YES
TTY
SPOOL

Specifies listing file. Default name filename.LIST

or L_filename

-SOURCE pathname
Same as INPUT.

Enable Expanded Listings/Cross References:
• -NOEXPLIST Suppresses expanded

listing.

-EXPLIST Prints listing including

assembler-like output.

. -NOXREF Suppresses cross-reference

listing.

-XREF Generates cross-reference

listing at the end of listing

file.

Specify Addressing Mode:
. -64V Generates code to run in

64V mode.

Run-time Assignments 75

RUN-TIME ASSIGNMENTS
The file assignments facility allows the user to over­
ride at run time filenames as stated in the VALUE OF
FILE-ID clauses of FDs. After invoking the run-time
image, the utility program CSIN will prompt for file
assignments and wait for user input:

ENTER FILE ASSIGNMENTS:
^>

Theuse rmayen te r thenameof the f i l ea sde f ined in the
FILE-ID of the FD. an equal sign =, and then the
pathname or tape address of the actual file to be asso­
ciated with the ID. The pathname can be a filename if
the file resides in the current UFD. Formats are:

disk: file-id = pathname
tape: file-id = SMTx, label-type, tape-id, tape-name

There should be one entry (preceded by prompt char­
acter >) foreachFDif its FILE-ID is to be reassigned or
overridden. When no files remain to be entered, the
user inserts the single slash character to conclude the
session. Execution of the applications program will
then begin, using the files which were just assigned.

	Front Cover
	
	Copyright
	i
	
	Table of Contents
	ii
	Format Notation
	1
	COBOL Program Structure
	2
	3
	4
	Identification Division
	5
	Environment Division
	6
	7
	8
	9
	10
	11
	Data Division
	12
	13
	14
	15
	16
	17
	18
	Procedure Division
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	COBOL Character Set
	61
	Reference Tables of COBOL
	62
	63
	64
	65
	66
	67
	ASCII Character Set
	68
	69
	File Status Code Definitions
	70
	71
	Permissible Input/Output Statements
	72
	Permissible Moves
	73
	Compiling
	74
	Run-Time Assignments
	75
	76
	77
	78
	
	Back Cover

